Monday, December 28, 2009

Singularity U Day 6: How to Build a Molecular Machine

A Singularity University student taped a picture of Ralph Merkle to a dorm room wall, executive director Salim Ismail tells me. Merkle makes an unlikely pinup, but I get it. He’s a great speaker, engaging students with unusual enthusiasm, clarity, and humor. It doesn’t hurt that what he’s explaining is one of the weirdest, scariest, most promising technologies on the horizon: molecular machines.

There’s some question about whether the concept of a minuscule machine assembled one atom at a time is even physically viable, but Merkle makes it palpable. In today’s session, he details a few gizmos designed by his collegue Robert Frietas, a research associate at the Institute for Molecular Manufacturing. Each one is a complex biomedical device designed to float freely in the human bloodstream, fixing problems that make doctors tear their hair out.

Take the respirocyte. “It’s like a tiny scuba tank,” Merkle says, a one-micron container filled with compressed oxygen. Essentially, it’s an artificial red blood cell, except that it would have 100 times a red blood cell’s carrying capacity. “Today your response to a heart attack would be, ‘I’ve got a heart att—’. With respirocytes in your bloodstream, your response is, ‘I’ve got a heart attack. I’ve got an hour or so to get myself into the hands of the emergency medical care system or I’m in big trouble.’”

You’d be in even bigger trouble if your immune system viewed nanobots as a threat, but Merkle doesn’t worry about that. His favorite material, diamond, is biochemically “pretty inert.” As for structures that can’t be produced out of carbon “you just have to design them so the immune system finds them uninteresting,” he says. “If you find a feature that excites the immune system, you just put some fuzz on it.”

Ultimately, he envisions fleets of fuzzy machines floating through the body, replacing DNA, repairing damage, delivering drugs, then being flushed out when their job is done. Once patients experience the benefits, they won’t be any more resistant to nanobots than they are to vaccines, fluorescent dyes, medicated stents, and the other futuristic preparations doctors inject into patients. How far in the future? With adequate funding and good luck, he says, 20 years; without, 40.

No comments:

Post a Comment