It takes a lot of juice to power the contemporary lifestyle. How to keep the AC going without turning up the burner under Hothouse Earth?
That’s probably the wrong question, says Michel Gelobter, Environment & Energy Track Chair at Singularity University. A better one would be, How much more do we have to mess up the planet to get to a state where we’re not messing it up anymore?
The meat of Gelobter’s presentation is a primer on the laws of thermodynamics and how to use them to determine the best path to sustainable energy. He points out that Newton’s laws, for all their immutable truth, are nicely formulated for the sake of human utility. Take the first law, conservation of energy. If energy never disappears, why do we care about it? Because we need it to be available. At the moment, we’re transferring preserved sunlight into the atmosphere, where it causes problems that require further energy (or a gargantuan decrease in energy consumption) to fix. We need to engineer a more efficient system.
Ultimately, he says, only three kinds of efficiency matter, all derived from thermodynamics, and they all have to do with theoretical maximum efficiency. (For the technically minded, the options are Thermal, Carnot, and Second Law efficiency.) For example, in theory, you can roughly double coal plant efficiently by burning it hotter — an opportunity that many businesses are trying to crack.
On the other hand, the closer you get to theoretical maximum, the harder it is to close the gap. So a smart strategy is to look for technologies that yield the greatest efficiency from the get-go. “That’s the beauty of the laws of thermodynamics,” Gelobter says. They give you a quick way to short-cut the political and economic complexities of the energy business and find out whether you’re operating from a solid foundation in terms of physics. With physics on your side, you’ve got a fighting chance.
Monday, December 28, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment